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A class of symplectic algorithms is introduced to integrate the equations of motion in many-body systems.
The algorithms are derived on the basis of an advanced gradientlike decomposition approach. Its main advan-
tage over the standard gradient scheme is the avoidance of time-consuming evaluations of force gradients by
force extrapolation without any loss of precision. As a result, the efficiency of the integration improves
significantly. The algorithms obtained are analyzed and optimized using an error-function theory. The best
among them are tested in actual molecular dynamics and celestial mechanics simulations for comparison with
well-known nongradient and gradient algorithms such as the Stormer-Verlet, Runge-Kutta, Cowell-Numerov,
Forest-Ruth, Suzuki-Chin, and others. It is demonstrated that for moderate and high accuracy, the extrapolated
algorithms should be considered as the most efficient for the integration of motion in molecular dynamics

simulations.
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I. INTRODUCTION

The method of molecular dynamics (MD) is widely used
for modeling of various processes in physics, chemistry, and
biology. It allows one from first principles to predict macro-
scopic properties of many-body systems at a microscopic
level of description from known interactions between the
constituent atoms and molecules. Despite noticeable previ-
ous developments, the construction of more efficient MD
algorithms remains a current problem in view of the re-
stricted capabilities of even modern supercomputers. Note
that the improvement in the efficiency makes it possible to
consider larger systems and examine them during longer ob-
servation times, reducing the finite-size effects and statistical
noise to a minimum.

Many algorithms have been proposed over the last several
decades to solve the equations of motion in MD and celestial
mechanics (CM) simulations. The traditional explicit Runge-
Kutta (RK) as well as implicit Gear, Adams-Bashforth-
Moulton, and other predictor-corrector (PC) schemes of dif-
ferent orders have been exploited in early investigations
[1-3]. It was soon established that such schemes are very
inefficient because they require too small time steps to avoid
an instability in the generated solutions [2,4,5]. As is now
well realized, the instability follows from the fact that these
solutions do not reproduce certain properties of Hamiltonian
systems, such as the conservation of volume in phase space
and self-adjointness [6-8]. In other words, the RK and PC
algorithms are neither symplectic nor time reversible and
cannot be appropriate for long-term MD and CM simula-
tions.

In 1990, a novel approach was proposed [9,10] for the
integration of motion in many-particle systems. In this ap-
proach, the time evolution propagator is decomposed into a
set of analytically solvable exponential operators [9-31]. As
a result, the decomposition integrators appear to be exactly
symplectic and self-adjoint for an arbitrary order in the time
step. For this reason they exhibit exceptional stability prop-
erties and thus are ideal for long-duration MD and CM com-
putations. For instance, the well-known velocity Verlet (VV)
algorithm [13,32], which is employed in the great majority of
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MD simulations, can be derived by the decomposition
method in terms of three exponential operators. This corre-
sponds to the second-order propagation with one force evalu-
ation per step. Extended versions of the VV algorithm with
five exponentials and two force evaluations were also con-
sidered [28]. The decomposition with three or four force cal-
culations represents fourth-order integrators [10,29].
Schemes with larger numbers of exponentials and higher or-
ders are generally not considered in MD applications since
they entail too large a number of costly force recalculations.
These more complicated schemes can be applied to CM sys-
tems (such as the solar one) where it is important to compute
the trajectories as precisely as possible.

In further studies, the decomposition approach was devel-
oped by including additional solvable parts associated with
force-gradient contributions into the exponential propagators
[33-35]. First force-gradient algorithms were introduced by
Suzuki [33] and Chin [35] for order 4 in the context of small
perturbations and few-body dynamics, respectively. The ad-
vantages of gradient schemes over their nongradient counter-
parts have been demonstrated in CM [35-37], stochastic
[38,39], and quantum [40-45] dynamics simulations. Re-
cently, the gradient approach has been adapted to simulate
the dynamics of many-body fluid systems and the corre-
sponding improved force-gradient algorithms have been de-
vised [46,47]. It has been proven theoretically and shown in
MD simulations that such algorithms may lead to a much
more efficient integration with respect to nongradient ones,
despite an extra computational effort spent on the calculation
of the gradients. A complete classification and derivation of
force and force-gradient decomposition algorithms up to or-
der 6 was done in Ref. [47] in 2003.

It is worth emphasizing that the gradient decomposition
approach, like the nongradient one, yields symplectic and
self-adjoint algorithms which are explicit—i.e., do not in-
volve iterative procedures. All other symplectic methods
known are implicit. An example is the implicit Runge-Kutta
(IRK) approach [48] in which expensive iterations should be
carried out at each time step to reproduce the symplecticity
and self-adjointness properties. Another important feature of
the force-gradient approach is the possibility to construct
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second- and fourth-order algorithms with decomposition co-
efficients which are all positive. This is contrary to the non-
gradient propagation, where beyond second order any
scheme expressed in terms of only force exponentials results
in some negative time coefficients [11]. Note that the nega-
tive time propagation is impossible in stochastic dynamics,
nonequilibrium mechanics, quantum statistics, etc., because
one cannot simulate stochastic or diffusion processes back-
ward in time or sample configurations with negative tem-
peratures.

As can be seen from the aforesaid, nowadays the gradient
decomposition approach is the most powerful tool for the
construction of high quality algorithms in different areas of
MBD applications. The only point concerning this approach is
the fact that the direct evaluation of force gradients may
present a difficulty for systems with complicated interaction
potentials (in particular, for long-range Coulomb interac-
tions, where the cumbersome Ewald summation technique is
used to properly take into account the tail contribution).
Moreover, such an evaluation is the most time-consuming
part of the propagation even for relatively simple potentials.
The calculation of force gradients may take the computa-
tional time which exceeds considerably the time needed for
the calculation of forces themselves. Therefore, in order to
further improve the efficiency of the decomposition method,
it would be very desirable to develop an advanced approach
allowing one to evaluate the force gradients in terms of
forces exclusively, rather than to calculate the gradients di-
rectly. In this paper, studying in detail the structure of de-
composition operators, we show that such an advanced gra-
dientlike approach indeed can be realized.

The paper is organized as follows. The standard gradient
decomposition method and its advanced reformulation are
described in Sec. II. Classification and derivation of ad-
vanced gradientlike algorithms are presented Sec. III. Their
applications to MD and CM simulations and comparison
with previous integrators are made in Sec. IV. Concluding
remarks are added in Sec. V.

II. THEORY
A. Equations of motion

Consider a classical N-body system described by the
Hamiltonian

N
-3 "0 —E olr) + E uey). ()

i=1 Hﬁ]

Here r; and v;=dr,;/dt are correspondingly the position and
velocity of particle i carrying mass m; and interacting with
all the rest bodies via the pairwise potential (,o(rij)E<p(|ri
- j|) in a spatially inhomogeneous time-dependent external
field u(r;,r). The Newtonian equations of motion for such a
system can be cast in the following compact form:

‘;_ft’ ={p© H} = L()p(1). )

where p=(r;,v;;...;ry,Vy) =(r;v) is the set of phase vari-
ables, {O} denotes the Poisson bracket, and
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L(t) = E (
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3)

designates the Liouville operator. The set a=(a,,...,ay) of
accelerations ai(r,t)=fi(r,t)/ m; is determined by the forces

(1) = - S B, ,,>—M 4)

jG#i) Tij r;

acting on the particles due to the interactions.
If an initial configuration p(0) is specified, the unique
solution to Eq. (2) can formally be presented for any time ¢

as
At 1
p(t) = (TCXP{ J L(s)dsD p(0), (5)
0

where T is the time ordering operator, At=¢/[ the size of the
time step, and / the total number of the steps. Suzuki proved
[49] that the ordered exponential can be expressed in terms
of usual exponential propagators,

p(1) = (expl(D + L)A1])'p(0) = (¢74)p(0), (6)

by introducing the time derivative operator D=4/t which
acts on the left on time-dependent functions [in particular,
F(t)ePA'=F(t+Ar) for arbitrary function F of f]. For conser-
vative systems (then external fields are absent, u=0), the
Liouville operator L does not depend explicitly on time, and
thus D=0.

In general Eq. (2) presents a very complicated set of
highly nonlinear coupled equations of motion. As is well
known, they can neither be solved exactly nor reduced to
quadratures already at N>2 even for conservative systems.
The only way of handling these equations is to perform the
calculations by numerical methods. This is especially true in
the case of MD simulations of many-body systems, where
N>2.

B. Standard gradient decomposition method

It has been mentioned in the Introduction that an efficient
numerical approach follows from the gradient decomposition
method. The main idea of this method is to factorize the
exponential propagator ¢’ on such subpropagators which
allow to be evaluated analytically. This is achieved by split-
ting the full operator L=D+L=A+B into its kinetic A and
potential B parts,

J 1%
A=D+v-—, B=a(r) —. (7)
or av

Then the total propagator ¢“*' can be decomposed as [46,47]

P

+1
ABIAREQAH) _ [T etardteBpriece, AL (8)

p=1

where C=[B,[A,B]] and [-,-] denotes the commutator of
two operators. For a given number P> 1 of stages, the coef-
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ficients a,, bp, and p have to be chosen in such a way to
provide the highest possible value for the order K>1 of
precision of the decomposition. As a result, the integration
(6) can be performed approximately using Eq. (8) and ne-
glecting the truncation terms E(A5*!) in view of the small-
ness of the size At=t/1 of the time step (note that />>1). The
accuracy of the decomposition will increase with rising K
and decreasing At. For ¢,=0 at p=1,2,...,P, Eq. (8) re-
duces to the usual nongradient factorization [9-11,15,29,33].

Taking into account explicit expressions [Eqgs. (7)] for op-
erators A and B, one obtains [47]

C=[B,[A,B]]= Eg’(r D2 G-, )
m;  9v; av
where
gia(r’t) = 22 &fia(r,t)ajﬁ(r7t)’ (10)
B I

a and B denote the Cartesian components of vectors, G
=(g,/my,...,gy/my), and the property [B,[D,B]]=0 has
been used. In view of Eq. (4), the force-gradient evaluations
i/ Jr g can be carried out explicitly and the result is

g(r,))=-2 2 {(w,- - WJ-)ﬁz + [rij (w; - Wj)]
JG#i) Tij

X _‘L(VUCPU QDI,]):| +hi(t)’ (11)
. .

ij

where w,(r,1)=- 2/0#1 i@’ (r;j) /7 is the interparticle part

of the full acceleratlon a,(r,0)=w,(r,r) - —0u(r,,t)/o7r,, <le
=¢ "(ry)=de(ry)ldry,  @i=deyldry, — and (1)
——Eﬁﬁu(r,,t)/o?r,ﬂ Pu(r;, 1)/ dr,,dr;g=h,(r;,1) denotes the
external-field contribution.

As can be seen, the function G(r,7) like a(r,#) does not
depend on velocity and, thus, the operator C commutes with
B. Then, taking into account the independence of v on r and
the commutation of D with v-4d/dr yields

A (r,v) = PR (r + a,vAt,v),

BEAHCOAL (1 ) = (r.y + b,alt+c,GAP),  (12)

which represent simple shifts in position and velocity spaces,
respectively [46,47]. Note also that the quantities a and G
being functions of r may depend also explicitly on time ¢ (if
u#0). Then any appearance of them on the left of the op-
erator ¢P%A" will shift their time coordinates—i.e.,
(@a(r),G(r,0))eP ™ =(a(r,r+a,A1),G(r,1+a,Ar)).  There-
fore, the exponential subpropagators arising on the right-
hand side of Eq. (8) are indeed analytically integrable. This
is a very important feature, reducing significantly the com-
putational costs, because no iterations are required to pro-
duce the solutions.

Note that the existence of force-gradients terms (c[ﬂ&O)
lowers considerably the truncation errors E(ArX*!) of the de-
composition propagation [Eq. (8)] at each given order K of
precision [47]. This compensates the increased computa-
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tional effort spent on the calculation of force gradients and
thus may lead to a more efficient propagation than in the case
of the nongradient one.

C. Advanced gradientlike reformulation

For many-body systems (N>> 1), the evaluation of force
gradients [Eq. (11)] presents the most time-consuming part
of the decomposition propagation [Eq. (8)]. Estimations
show that, in dependence on the form of the interacting po-
tential ¢, this evaluation can take the computational time
which is larger in a factor of #=2-5 with respect to that
needed for the calculation of forces [notice that Eq. (4) is
much simpler than Eq. (11)]. The factor 6 can increase fur-
ther in the case of long-range (Coulomb) interactions, where
the calculation of force gradients is especially difficult be-
cause of a very complicated structure of Ewald expressions.
For this reason, the question arises on how to avoid the direct
evaluation of force gradients and, at the same time, maintain
a high level of precision inherent in the gradient method. We
will now show that the gradients can be expressed in terms
of only force evaluations without breaking the exponential
structure of decomposition propagators. This will further im-
prove the efficiency of the decomposition method, because
the same accuracy can be reached by lower computational
costs.

First, it should be taken into account that the force acting
on the ith particle (i=1,...,N) depends on the positions of
all the bodies [Eq. 4)]—ie., f£i(r,0)=f(r;,...,ry,10)
=f,({r;},1). Second, one introduces modified forces f({r;
+&a,(r,0)A%}, 1) =f(r+ £aAr*,1), obtained by shifting the
original positions r;=r;(f) on small values §aj(r,t)A12,
where & denotes a constant. Then expanding the modified
forces into Taylor’s series in the shifted positions one finds

of(r, t)

f.(r + &aAr2, 1) =f,(r,0) + E r,0) AP+ T(r,1)

J
2
—(r.1) + gi(r.1) §7t £ T e, (13)

where the definition [Eq. (10)] of g;(r,) has been used. The
higher-order terms can be cast as

N

2k
L(e0) = 2 s E,(r, 1) H ar gkm
k=2 jpe i Hz | 0L l=
= > T, ndAart, (14)
k=2

We see therefore that the force-gradient vector g; actually
appears as the first-order term (k=1) in &Ar*/k! of expan-
sion (13). To simplify the notation, such an expansion can be
rewritten in the abbreviated acceleration form
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) Ar?
a(r + &(r,n)Ar", 1) =a(r,1) + G(r,t)§7

+ > T®(r, ) AR, (15)
k=2

where G(r,t)=2a(r,t)da(r,7)/dr [Egs. (9) and (10)] and
T'O(r,1)=1ak(r,dfa(r,7)/or*  designates  the  set
(F(lk)/ml - ,F%‘)/mN). Then the second line of Eq. (12) can
be expressed in terms of the modified acceleration [Eq. (15)]
as

eBb,,At+CcpAz3V —v+ prt(a(r,z) + %G(r,z‘)Atz)
4

=v+ prt<a(r + éa(r,r)Ar% 1)

- F%W”) , (16)
k=2

with £=2¢,/b,,. Since T'¥(r, 1) like a(r,?) and G(r,?) does
not depend on velocity, we can introduce the high-order gra-
dient operators

k
_a (r,7) da(r,?) i (17)

J
D,=T® r,t)- —
k (1) av k! ark av

(which commute with B and C; note that C=2D,) and trans-
fer the high-order terms of the right-hand side of the third
line of Eq. (16) into the left-hand side of the first line under
the exponential propagator. Then within the Kth order of
precision one obtains

Ki2-1
exp[Bprt + CcpAt3 + DkdpkAt2k+1]V
k=2

2c
=v+prta<r+ ;Ea(r,t)Atz,t> + O(AFH, (18)
P
where dpk=2kcf,/ bﬁ_l and the higher-order terms O(ArX*!)
have been neglected.
In view of Eq. (18), the time evolution propagator can
now be decomposed as

P
K+1 K+1
LAREMHE) _ jaemAnEQS _TT eAapAfexp< Bb,At
p=1

K/2-1
+Ce, AP+ 2 Dkd,,kAtz"“), (19)
k=2

where E(ArX*!) denotes the total truncation uncertainties
[which include O(A¢%*")]. Then the integration (6) can be
carried out within an arbitrary order K of precision [so that
the truncation terms E(Ar5*!) are neglected] using the ad-
vanced decomposition [Eq. (19)]. The latter has a similar
structure to that of the standard force-gradient scheme [Eq.
(8)] but includes additional high-order gradient operators D;.
Such an inclusion presents no difficulties; rather, this simpli-
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fies the calculations significantly because no evaluation of
the gradients is in fact required. According to Eq. (18), all
the gradient operators up to a given order K of precision can
be collected together to represent a modified (extrapolated)
acceleration. Then at each current stage p of the integration
process at c¢,# 0, the advanced propagation reduces to the
calculation [Eq. (4)] of only two forces corresponding to the
genuine a(r,7) and extrapolated a(r+2cpa(r,t)At2/bp,t) ac-
celerations. This is contrary to the standard decomposition
scheme [Eq. (8)], where besides a(r,r), the cumbersome
force-gradient evaluation of g;(r,7) [Eq. (11)] is needed. In
the advanced decomposition scheme, such an evaluation is
obviated by calculating the extrapolated term a(r
+2c,a(r,1)Ar*/b,, 1) which includes implicitly the force gra-
dients.

Another important feature of the decomposition integra-
tion (19) is that it conserves exactly the symplectic map of
particle’s flow in phase space. This follows from the fact that
separate shifts of position [Eq. (12), first line] and velocity
[Eq. (18)] do not change the phase volume. The time-
reversibility (or self-adjointness) property S~!'(f)=S(-f) of
the evolution operator S(f)=e’ for conservative systems
(D=0) can also be satisfied exactly by imposing a symmetry
on the decomposition coefficients a,, b,,, and Cp- There are
two types of such conditions [47]. The first one reads a,=0,
Apr1=Ap_pr1> bpy=bp_,.1, and c,=cp_,,y, 0 that the velocity
will be changed first and the corresponding algorithms will
be referred to as of velocity type. The second one is a,
=ap_ps1> b,=bp_,, and c,=cp_, with bp=0 and cp=0, so that
the position will be changed first and the corresponding al-
gorithms will be referred to as of position type. According to
these conditions, the single-exponential subpropagators will
enter symmetrically into the decomposition (19), providing
automatically the required self-adjointness. Note that the co-
efficients dpk=2kcl]‘,/b[’§_l (where dp,=0 when cp=0 and bp
=0) will be symmetric as well because they are completely
defined by b, and c,,.

D. Order conditions

For each number P> 1 of stages, the coefficients a,, bl,,
and c, of the decomposition [Eq. (19)] must be chosen in
such a way to provide the best precision of the integration.
This can be done by satisfying order conditions up to the
highest possible order K> 1 of precision. It can be shown
that due to the imposed symmetry on decomposition coeffi-
cients, all the even-order terms in the error function of Eq.

(19) will vanish—i.e.,
E(AFY) = E|At + E;AP + ESAP + E;AL + -+ + Eg A
4o (20)

Therefore, the order K of the self-adjoint algorithms may
accept only even numbers (K=2,4,6,8,...). The cancella-
tion of the remaining odd-order terms have to be provided by
fulfilling the set of the order conditions E;=0, E5=0, and so
on up to Ex_;=0 for order K.

Let us write down explicit expressions for the functions
E,, E3, Es, and E; (this will be enough to derive algorithms
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up to the eighth order). Expanding both sides of Eq. (19) into
a Taylor’s series and collecting the terms with the same pow-
ers of At one finds

E,=(v-1)A+(0-1)B,
E3 = CY[A,[A,B]] + B[B’[A7B]]7 (21)

Es=ylA,[A[A[A,BII]+ %[A,[A,[B.[A.B]]]]

+ ’)/3[B’[A7[A’[A’B]]]] + 74[3’[8’[A’[A’B]]]] + 771D2’
(22)

E;={[B,[B,[A.[B,[A,[B,A]I]]

+ §2[B’ [Bs[B9[A’[A’[B9A]]]]]]

+ &[B,[B,[A.[A[A,[B,A]]]]]]

+ §4[B7 [A7[B»[A7[Aa[B»A]]]]]]

+ §5[A,[B,[B,[A,[A,[B,A]]]]]]

+ ZG[A’[B’[A9[B’ [A’[B’A]]]]]]

+ §7[B’ [Aa[A’[A’[A’[B9A]]]]]]

+ G[A[B.[AL[A[A,[B,A]]]]]]

+ gg[A,[A,[B,[A,[A,[B,A]]]]]]

+ £10lAL[AL[AL[AL[AL[B,A]I]] + 72D

+ 7]3[A’[A9D2]]’ (23)
where the commutation equalities [B,C]=[B,D;]=[C,D;]
=0 have been taken into account and the Baker-Campbell-
Hausdorff (BCH) formula e Bh—exp[(A+B)h+ 7[A.B]

3
+15([A[A,B]1-[B.[A,B]])+ -] has been used. As can be
seen from Egs. (21)—(23), the structure of order conditions
for the advanced decomposition scheme is similar to that of
the standard gradient approach [46,47]. The only difference
is the existence of additional terms with D, (k=2,3,...) in
the error functions E,;,; beginning from the fifth order.
Explicit expressions for the generating functions v, o, a,

B, Y14 M3, and {;_;o can be obtained using a recursive
procedure. It is based on the fact that any self-adjoint decom-
position scheme [Eq. (19)] can be reproduced by alternately

applying P—1 times the following two types of symmetric
transformations

n+1) (n) n) ()
eW( :eAa AteW< eAa At (24)

and

K/2—-1
MY exp( Bb"WAr+ CcWAP + Dkdgcn)AtZkH)
k=2

X eWWexp<Bb(")At + Cc AP

K/2-1
+ > Dkdg"wm), (25)
k=2
where n=0,1,2,...,P-1 and
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W = (VA + o B)Ar + ESPAS + ESAS + -+

The transformations should start from a central single-
exponential operator W(*) which always can be selected, be-
cause the total number of single-exponential operators is ac-
tually equal to an odd value, S=2P—1 (note that either a;
=0 or bP:CP:deZO).

For velocity type of decompositions (when a;=0) with
even P or for position type (when bp=cp=d;p=0) with odd
P, the central operator is correspondingly eA?P2+14" or

eAPenA - So that here we must put ¢?=a=p0 —y((i)

—17(10)3 §<10)10—0 as well as either ¥0=ap),,, or v° )—a (P+1)2
on the very beginning (n=0) of the recursive procedure.
Moreover, we should start from the transformation (25) at
bO=b,, V=c,, and d,(co)=ko, where Q=P/2 or Q=(P
+1)/2-1 with further alternate decreasing the subscript p
=0,0-1,...,11n a(”)Eap+l or b(")Eb,,, c(")Ec,,, and d]((")
Ed,,k with increasing n=1,2,...,P—1 during the transfor-
mations (24) or (25). For velocity type with odd P or posi-
tion type with even P, the central operator is
BbQAt+CcQAl3+D2dQ2At5+D3dQ3At7+"~, where QZ(P+1)/2 or Q
_P/2 Wthh corresponds to 0'0) by, 0)—CQ d —dQ2,
and 7=dy; with 19=0 and af —'y(lo) (50)10 773)—0 In
this case, the procedure should start from the transformation
(24) at a(0>—aQ with alternate decreasing p=0Q,0-1,...,1
in W= p, cW= Cps and dk —d or a(")—a at increasing n
in Eq. (25) or (24).

Applying again the BCH formula within each elementary
transformation, one finds recursive relations. For functions v,
o, a, 3, and 7,_s corresponding to transformation (24), they
read

YD) 2 ) o) plnel) 2 o)

2D = g™ _ g0 G () 4 /6.

ﬂ(n+1) — B(n) _ a(ll)a_(n)2/6’
77(n+1) 7]('1) n(n+1) _ 77(2n ,
7](3"“) = 7)(3”) —am n(ln)(a(”) +1M)/6. (26)

For transformation (25) the relations are

V(n+l) — V(n)’ a_(n+l) — 0_(11) + 2b(n)’

a(n+]) — a(n) + b(n)V(n)2/6,

B(n+l) — B(n) + [IQC(”) + b(")v(")(b(") + O.(n))]/6,

7](ln+]) 7](”) + Zd(n 7](2n+1) 77 + 2d(n)

7yt = {0+ dyPv6. (27)

The relations for y,_4 and {;_;( are the same as in the case of
the standard gradient approach and can be found in Ref. [47].

Therefore, at the end of the recursive procedure we come
to the desired generating functions v, o, «, 8, ¥;_4, 1;_3, and
{110, expressed explicitly in terms of decomposition coeffi-
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cients a,, bp, and cp with p=1,2,...,P. Then according to
the structure of Egs. (21)—(23), the order conditions E,,;
=0 (where k=0,1,2,3,...) transform into a set of nonlinear
equations v=o0=1, a=8=0, v, 4=0, 7,.53=0, {_0=0,
which should be solved with respect to unknown decompo-
sition coefficients ap,, bp, and Cp- Some of the equations are
particularly simple—namely, V=E§=1ap:1 and 0':2;119,,
=1 as well as

2

P P c
nl:2d2p=42_2:0’
p=1

P P 63
) =2 dy, =82 5 =0.
p=1"p p=1

p=1 bp

(28)

Putting v=0=1 will cancel the first-order truncation uncer-
tainties, £,=0, and lead to second-order (K=2) algorithms.
Fourth-order (K=4) schemes can be obtained by additionally
letting «=0 and =0, destroying the third-order truncation
term, E5=0. The next functions vy,_4, 7,_3, and {;_;o should
be set to zero to destroy the higher-order error terms E5 and
E, for obtaining sixth- and eighth-order algorithms, respec-
tively.

E. Higher-level acceleration scheme

All the commutators appearing at the generating functions
in Egs. (21)—(23) can be reduced to the Liouville-like form

J J
F=F.(v,v,)- —+F,(r,v,0) —, (29)
Jar v

where the vector functions F.(r,v,f) and F,(r,v,r) are dif-
ferent for different commutators. In general, these functions
are very complicated (especially for commutators with large
numbers of operators A and B) involving various combina-
tions of velocity, acceleration, and force gradient tensors vk,
af(r,7), and &a(r,r)/or* of different orders k. There is a
special group of commutators for which the functions F, are
equal to zero, while the functions F, are independent of ve-
locity. For each error function E,,; (with k=1,2,3,...), this
group includes such (2k+1)th-order commutators C; in
which the operator A appears k times. They are C,
=[B,[A,B]1=C [Eq. 9)],

da(r,?) K2

C,=[B.[B.[A.[A,B]]]]=4D, + 4T V(r,1) Pt

C3=[B,[B,[A,[B,[A,[B,A]1]]]]

da(r,t) oJ
=-36D; - 36F<2>(r,t)L =,
Jr av

CY=[B,[B.[B.[A,[A.[B,A]]]]]] = - 24D; - s{srm

2
X(r,t)(?a;:t) +F(l)(r,t)<aa;:t)> ] aiv (30)

and so on for higher k. The operators D, [as well as their
commutators with A; see Eq. (17)] also belong to the group
and commute with C; and B. Because within the group the
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function F,=F(r,7) does not depend on v, the exponential
propagators ¢“¥" with operators C, [Eq. (30)] allow an ana-
lytic representation [like the propagators with B, C, and Dy;
see Eq. (18)]. Such a representation can be found as follows.

Denoting the genuine and extrapolated accelerations
by aO(r,)=a(r,r) and aV(r,r,Ar)=a(r+&Ara s,
where §=2cp/ bp, we can develop the recursive scheme
at*D(r 1, Af)=a(r+ Ar2a® 1), where s=0,1,2, ..., to intro-
duce the extrapolation a®) of the sth level. The latter pre-
sents, in fact, an sth-order approximation to the solution of
the self-consistent equation

2
a(r,t,Ar) = a(r + fﬁAtzﬁ(r,t,At),t) , (31)
p

where the exact solution can be cast as a(r,t,Af)
=limsﬂma(5)(r,t,At). It can be shown after cumbersome al-
gebra that this solution satisfies the formula

2 3
exp{Bprt + CcpAt3 + EBCZAts + %
b, b2
1 1\ A7 _
X (4C3 —9C3)?+ o [v=v+b,Ad(r,, AL,

(32)

where the higher-order commutators of A and B belonging to
the above group have been omitted. This formula is exact but
requires the infinite number of C; terms to be included and
the infinite number of iterations to be performed to obtain
a(r,z,Ar). In practical applications, we can use finite coun-
terparts of Eq. (32) up to a given order K of accuracy by
neglecting the higher-order truncation uncertainties
O(A®1). Then for the second-level description one finds

2 K/2-1 k
c c
exp| Bb,At+ Cc, AP+ LCAP + X =5
b, 2
X WA ly=v + b[,Ata(z)(r,t,At) + O(AFY),

(33)

where W, are the high-order operators which like D, [Egs.
(18) and (30)] contain portions of the full commutators C.

We can now build the second-level decomposition scheme
replacing in Eq. (19) the velocity propagator of Eq. (18) by
that of Eq. (33). The difference with respect to the first-level
acceleration description [Eq. (18)] is that such a scheme in-
volves under the exponential propagator the full second-
order commutator C, instead of its shortened counterpart D,
[Egs. (17) and (30)], as well as more complete (than D)
higher-order parts W of C, where k=3, ...,K/2-1. For this
reason, the second-level acceleration description may lead to
a more precise propagation than the first-level one. However,
its disadvantage is that it requires three force evaluations
(@®, aV, a®) per single-exponential propagation [Eq. (33)]
instead of two (a®,al) during the advanced propagation
[Eq. (18)]. The third- and higher-level descriptions (s=3)
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will require too large numbers (namely, s+ 1) of force evalu-
ations to map the gradient and thus can be excluded from the
consideration.

Within the second-level description [Eq. (33)], the
error functions Es and E; [Egs. (22) and (23)] should
be modified replacing D, by C, and D; by W¥;. Then
the last term on the right-hand side of Eq. (22) can be col-
lected together with the next to last one resulting
in  (y+7,)C,=%I[B,[B,[A,[A,B]]]]. Because of
[A,[A,C,]]=—[A,[B.[A,[B.[A,[B,A]]]]]], the last term on
the right-hand side of Eq. (23) can be com-
bined with the {; term leading to —({s—m3)[A,[A,C,]]

=([A,[B.[A.[B,[A,[B,A]]]]]]. As a result, the set of gen-
erating functions reduces to v, o, a, B, Vi_3, Ya=Va+ 115 T,
1-s, L6=L6— M3, and L7_g.

The advanced gradientlike approach [Egs. (18), (19), and
(30)] like the standard gradient method [Eqgs. (8) and (12)]
leads to positive decomposition coefficients a,>0 and b,
>0 with p=1,2,...,P for orders K=2 and K=4, since the
commutator C= C is included into the exponential operator
(the importance of the positiveness was highlighted in the
Introduction). The inclusion of the higher-order commutator
C, or D, does not allow one, however, to construct positive
decompositions of order K=6 (and higher). Indeed, accord-
ing to the condition 7,=0 [Eq. (28)], the sum of nonzero
terms ¢, 2/ b, can be equal to zero when some of them are
positive and some negative. Since Cp>0 it follows immedi-
ately that at least one coefficient b, should be negative. Note
that the commutators C;, (as well as their shortened counter-
parts D; and W) are the only ones which being included
under the exponential propagator can be represented analyti-
cally. In general, no other commutators of A and B allow
such a representation, because then the functions F, and F,
will depend on both position and velocity.

Quite recently, Chin [50] has shown that in order to obtain
all positive coefficients a, and bp for order six, the fifth-order
commutator U=[B,[A,[A,[A,B]]]] must be included. But it
does not belong to the introduced above analytically inte-
grable commutator class. The only way to handle the expo-
nential propagator UM s 1o carry out numerical iterations.
However, taking into account a very complicated structure of
functions F(r,v,r) and F(r,v,7) corresponding to U, this
requires the direct evaluation of force gradients up to the
third order in position (operator A appears 3 times under U).
The latter prevents the implementation of positive sixth-
order decomposition algorithms for many-body systems in
practice, because then the computational efforts increase dra-
matically. Moreover, the dependence of F, on r and F, on v
destroys the symplecticity of the integration, while the itera-
tive character of the propagation will violate the time revers-
ibility of the solutions.

F. Runge-Kutta-Nystrom-like representation

In view of Egs. (12) and (18), the advanced exponential
propagation [Egs. (6) and (19)] presents consecutive position
and velocity shifts. Summing these shifts one finds explicit
values for position and velocity at the end of the gth inter-
mediate stage,
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q
r=r(1)+ 2 a,v"VAr,

p=1

<4>_v(t)+2b ( %ﬂa(r(”,t)Atz >At, (34)

p

where ¢g=1,2, ..., P, with rO=r(s) and v"?=v(r). The ac-
tion of operator D on time-dependent acceleration [see the
text just below Eq. (6)] results in the time coefficients 7,=¢
+7,At with 7,=1-27_,a,=1-\,. Substituting the second
hne of Eq. (34) into the first one and taking into account that
r(t+An=r" and v(r+Ar)=v"? yields the following
equivalent representation of the advanced decomposition
propagation:

P-1
r(t+An) =r() + v()Ar+ A2 D ba(r?,,),

p=1

P

v(t+An) =v(1) + At bar?,1,), (35)
p=1

where

p—1
P =r(1) + \,V(1)Ar + At221 @, a0 + £ar'? 1 )AL 1),
q=

(36)

as well as §,=2c,/b, and a@,,=>F_,a;, with a;,=a;b, for q
<k and a,=0 otherw1se
EP _1a,=1 has been used.

Formally putting &, =0 reduces Egs. (35) and (36) to the
explicit symplectic Runge-Kutta-Nystrom (SRKN) form [8]
corresponding to standard nongradient decomposition
schemes. Note that to avoid confusion we should distinguish
between three different types of algorithms—namely, the tra-
ditional explicit nonsymplectic Runge-Kutta (referred to as
RK) [1-3], the more recent implicit symplectic Runge-Kutta
(referred to as IRK) [48], and the modern SRKN [8] ones.
The advanced gradientlike approach proposed cannot be fit-
ted to any previously known integration scheme. It consti-
tutes a new class of decomposition integrators which will be
referred to as the extrapolated gradientlike algorithms. They
generalize both the nongradient- and gradient-SRKN-type
schemes. Like the nongradient scheme, the advanced formu-
lation is free from any gradient calculations and involves
only force evaluations. At the same time it exhibits all the
advantages of the gradient approach (since the decomposi-
tion coefficients ¢, may accept nonzero values—i.e., £, #0).
The latter can be reproduced by expanding the extrapolated
acceleration over the displacement fqa(r(q t )At2 around the
original position r'? by restricting ourselves to first-order
spatial derivatives.

l;l,ziipp, and the condition
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III. DERIVATION OF ALGORITHMS

A. General classification

The force-gradient algorithms corresponding to the stan-
dard decomposition scheme [Eq. (8)] have been comprehen-
sively derived and classified in Ref. [47] up to P=6 stages
and order K=6. The classification within the advanced gra-
dientlike decomposition approach [Eq. (19)] will be similar
for orders K=2 and K=4 but may differ for K=6. This is so
because the new D, terms (k=2) appear in the error func-
tions E,,; only beginning from the fifth order [Egs.
(21)—(23)]. For the same reason, all the decomposition coef-
ficients a,, b,, and c, (p=1,2,...,P) obtained in Ref. [47]
for gradient schemes of orders K=2 and K=4 with any num-
ber P of stages considered are applicable for the correspond-
ing extrapolated gradientlike algorithms. However, the D,
term may influence on the norm Os=(yj+¥;+Y+vi+7;
+v,7)"? of the error function Es5. Therefore, the extrapo-
lated fourth-order algorithms can be optimized additionally
by minimizing Os.

The above form of Os follows from the uniform weight
concept (see below) and the mutual independence of the
fifth-order commutators arising at functions y,_4 in Eq. (22).
At the same time, the commutators C, at vy, and D, at 7, are
not independent and connected according to Eq. (30). This
has been taken into account by including two terms with
m=mn/4 into Os. Similarly, the norm of the seventh-
order truncation uncertainties FE; can be introduced
as O7=[Z2, G+ 75 (1/362+1/24%) = 1, (£, 136+ £,/ 24)
+(73/4)> = Zgm3/4]"2, where the relations [Eq. (30)] between
the commutators C%H at vy, , and Dj at 7, as well as between
[A.[A.D,]] at 7 and [A,[B.[A,[B.[A.[B.A]]]]]]
=[A,[A,C,]] at ; have been used. For K=2, the norm O,
=(a*+B*)"? of the third-order error function Ej is exactly
the same as for standard gradient algorithms (when 7,_;
=0).

In rare cases, an extra optimization can be performed ex-
ploiting specific features of extraordinary systems. In par-
ticular, for order K=4 we could introduce weights g;_s at
v1—4 and 77; when constructing the norm Oy and analyze a
relative contribution of each commutator into the full func-
tion E5 to determine g;_s. However, this cumbersome analy-
sis leads, as a rule, only to a slight improvement of the pre-
cision and cannot be realized, in general, for interacting
systems with arbitrary interparticle potentials. As has been
shown in the case of MD simulations [46,47], an efficient
optimization of decomposition algorithms can be done
within the uniform weight concept (g;=1). It allows one to
obtain uniquely decomposition coefficients and evaluates a
minimum which almost coincides with that related to actual
errors arising during MD simulations.

The corresponding order conditions for each given num-
ber P of stages and order K have been solved with respect to
unknown decomposition coefficients in the spirit of Ref.
[47], taking into account the new generating functions 7;_3
apart from the standard ones v, o, a, B, ¥_4, and {;_;o. Thus,
the second-order algorithms were reproduced by letting v
=o=1. Algorithms of order 4 were derived by solving addi-
tionally the two conditions @=0 and B=0. For order 6, they
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were supplemented by the five new members vy, 4,=0 and
7;=0 and so on for higher orders. With increasing the num-
ber P of stages at a given order K, the number of order
conditions can be less than the number of decomposition
coefficients. In such a case, the algorithms have been opti-
mized by minimizing the leading error norm Og,; with re-
spect to the remaining n>0 free parameters. For n=0, the
system of order conditions can have one or more sets of
solutions. In the latter case, only the optimal set which mini-
mizes Oy, has been chosen. The results obtained within the
advanced gradientlike approach [Egs. (18) and (19)] are pre-
sented in Table I up to P=5 and order K=6.

The algorithms are shown in an abbreviated form, where
the letters A and B designate the exponential operators e%*!
and P2 respectively, whereas the letter C denotes
exp(Bprt+CcpAt3+EkKﬁ_1DkdpkAt2k”). Each group of al-
gorithms corresponding to the same number S=2P-1 (§=3,
5,7, or 9 for P=2, 3, 4, or 5) of exponential operators are
separated by horizontal lines. Within the same group, the
algorithms are allocated in the order of increasing K and the
number n; of force evaluations per step. For the same values
of K and ny, the velocity versions (where the letters C or B,
but not A, appear first) are written before their position coun-
terparts. The efficiency X of the algorithms has been mea-
sured using the formula Xpg=1/(nfkOy,,) [47]. For the pur-
pose of comparison, the number n, of gradient evaluations
per step related to the corresponding standard gradient
scheme [Eq. (8)] is also included in Table I. Then the ratio of
computational times spent during this standard scheme and
the extrapolated gradientlike propagation can be estimated as
kog=[(ng—ngy)+6n,]/n;, where 2<6=<5 denotes the factor
defining the relative cost spent on one gradient evaluation
with respect to that of one force calculation [see Sec. II C
and remember that in the extrapolated scheme the total num-
ber n; of force evaluations consists of the number of genuine
accelerations (n;—n,) plus the number n, of modified ones,
while the gradient evaluations are absent at all]. Even at
=2 (this value was used for the calculation of the efficiency
of standard gradient algorithms in Ref. [47]), the extrapo-
lated algorithms can be quicker up to «,~ 1.5 times, while
up to ks~3 times at #=5. For the latter reason, the effi-
ciency of the standard-gradient algorithms presented in Ref.
[47] (see Table 2 there) should be in fact decreases by a
factor of ks/Kky~2.

As can be seen from Table I, at S=9 there are 30 possible
self-adjoint combinations of exponential operators A, B, and
C resulting in 29 different algorithms. Some among them are
particularly outstanding since they reduce the norms of trun-
cation errors in several orders without any additional com-
putational costs. The particularly outstanding algorithms ex-
hibiting the highest efficiency at each given number n; of
force evaluations per time step are highlighted in Table I by
the bold font. The best second-order (K=2) algorithm is un-
der No. 5 in Table I and corresponds to the extended nongra-
dient propagation with ny=2. Its efficiency is approximately
3 times higher with respect to the Verlet integrators (Nos. 1
and 2) related to n;=1. This confirms the results obtained
previously in Ref. [28]. In the case of order K=4, the pattern
is quite different. Here, the best algorithms definitely
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TABLE 1. The complete family of extrapolated self-adjoint decomposition algorithms with up to nine

exponential operators

Algorithm Order ny n n, O3 Os 05 Efficiency Remarks No
BAB 2 1 0 0 93x102 91x1073 1.3x1073 1 [1332] 1
ABA 2 1 0 0 93x1072 9.1x103 13x1073 11 [13] 2
CAC 2 2 1 1 83xX1072 13x1072 23x1073 3 New 3
ACA 2 2 1 1 42X1072 72x1073 80x10™* New 4
BABAB 2 2 1 0 85x103 1.0x103 1.1x10™* 29 [28] 5
ABABA 2 2 1 0 85xX107% 1.1x1073 1.1x10™* 29 [28] 6
CABAC 4 3 1 1 0 3.6X1073 2.7x10™ 3 New 7
BACAB 4 3 0 1 0 8.1x10* 6.5x107° 15 New 8
CACAC 4 4 1 2 0 6.8X10™* 4.8x107° 6 New 9
ACACA 4 4 0 2 0 6.8x10™* 5.6X 107 6 New 10
BABABAB 4 3 0 0 0 3.8%X1072 1.3x1072 0.3 [10] 11
ABABABA 4 3 0 0 0 28%X1072 6.3x1073 04 [10] 12
CABABAC 4 4 1 1 0 1.0X107% 43x107° 4 New 13
ABACABA 4 4 1 1 0 1.4%x10% 9.9x107° 27 New 14
BACACAB 4 5 1 2 0 54%X107° 4.5x107° 30 New 15
ACABACA 4 5 1 2 0 9.2X107 8.0%x107° 17 New 16
CACACAC 4 6 2 3 0 42X107° 6.0x107° 18 New 17
ACACACA 4 6 2 3 0 3.0X107° 4.0%x107° 25 New 18
BABABABAB 4 4 1 0 0 6.5X10™* 6.5x107° 6 New 19
ABABABABA 4 4 1 0 0 6.1X10™* 4.6x1073 6 New 20
BABACABAB 4 5 2 1 0 6.4X107 55x107° 25 New 21
CABABABAC 4 5 2 1 0 40x10™ 2.9x1073 4 New 22
CABACABAC 4 6 3 2 0 24X107 7.1x107° 32 New 23
BACABACAB 4 6 2 2 0 1.5X107° 1.7x107¢ 52 New 24
ABACACABA 4 6 2 2 0 34X107° 1.8x107° 23 New 25
ACABABACA 4 6 2 2 0 50X107 4.8x107° 15 New 26
CACABACAC 4 7 3 3 0 15X 107 2.1x107° 28 New 27
ACACACACA 4 8 3 4 0 7.6X107° 2.1x107° 32 New 28
CACACACAC

= 6 7 -1 3 0 0 1.5x1073 0.006 New 29
BACACACAB

belong to the extrapolated gradientlike decomposition
class. They include the algorithms under Nos. 8, 14, 15, and
24, related to the cases n;=3, 4, 5, and 6, respectively.
The efficiency of these integrators may exceed the efficiency
of the corresponding best nongradient (n,=0) algorithms un-
der No. 12 (n;=3) and No. 20 (n;=4) from several times up
to two orders. At ny;=7, we come to the sixth-order algorithm
(No. 29).

It is worth pointing out that the efficiency of the most
outstanding extrapolated algorithms of order K=4 increases
from Xgg=15 (No. 8) to Xg=52 (No. 24) with increasing
the number of exponential operators from S=5 to 9. This
does not mean, however, that the algorithms with the highest
efficiency should be considered as the best in general. The
reason is that with rising S, the number n; of force evalua-
tions and thus the computational efforts increase as well. Of
course, this increase is overcompensated by a much rapid
decrease of the truncation errors O, as this follows from

the structure of the formula Xgg=1/ (nf(’),m). For instance,
the increase of X in a certain number of times at a given n;
merely indicates that the precision (which is inverse propor-
tional to Ok, ;) can be improved in the same number of times
within the same computational costs. But when such a very
high accuracy is not required, as in the case of MD simula-
tions, we can restrict ourselves to the extrapolated gradient-
like algorithm No. 8 with three force evaluations per step.
The higher-precision algorithms Nos. 14, 15, and 24 can be
used in CM applications.

B. Decomposition coefficients

The explicit values of decomposition coefficients corre-
sponding to the particularly outstanding algorithms Nos. 1, 5,
8, 14, 15, 24, and 29 are presented below for n;=1, 2, 3, 4, 5,
6, and 7, respectively, and orders K=2, 4, and 6. The non-
gradient VV algorithm No. 1 and its extended version No. 5
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were introduced earlier [13,28], while algorithms Nos. 8, 14,
15, 24, and 29 belong to the extrapolated gradientlike de-
composition class [Egs. (18) and (19)]. Note that the decom-
position coefficients of the extrapolated algorithms Nos. 8
and 29 coincide with those obtained within the standard gra-
dient approach [47]. The reason is that in these cases n=0,
so that there are no free parameters to perform additional
optimization of Os. For extrapolated algorithms Nos. 14, 15,
and 24, when n >0, such an optimization results in new de-
composition coefficients.

1. One force per step, order 2

Here P=2, K=2, and ny;=1, and we reproduce the well-
known nongradient velocity Verlet algorithm [13] (No. 1 in
Table I) with the following decomposition coefficients:

1

a]=O, bl:bz:i, C]=C2=O, a2=l. (37)

2. Two forces per step, order 2

The extended second-order nongradient VV version (No.
5) is obtained [28] at P=3, K=2, and n;=2 with

a;=0, by=b3=0.1931833275037836,

b2=1—2b1, C1=C2=C3=O. (38)

a2=a3=5,

3. Three forces per step, order 4

Increasing the number of force evaluations per step to
ng=3 gives the possibility at P=3 to raise the order to K
=4, and we come to the extrapolated gradientlike algorithm
No. 8 with

1
611:0, bl=b3=g, C1=C3=0
1
a2=a3=5, b2= 1 —Zbl, C2=7_2. (39)

Because here n=0, the decomposition coefficients [Eq. (39)]
coincide with those obtained previously by Suzuki [33] and
Chin [35] in the context of the standard gradient method. But
using the same coefficients within the extrapolated scheme

allows us to improve the efficiency approximately 3 times
(cf. with line No. 8 in Table 2 of Ref. [47]).

4. Four forces per step, order 4

Raising the number of stages to P=4 yields the best al-
gorithm No. 14 of order K=4 with n;=4 force evaluations
per time step with the following coefficients:

a, =0.0929644676988989 = a,,
b, =0.2514919641733771 = b5,

C1=0=C3,
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a,=0.4070355323011011 = a;,
b, =0.4970160716532459,

¢, =0.0067114358547654,

C4:0. (40)

They differ (because now n>0) with respect to those of the
corresponding standard gradient scheme, and even at 6=2
the gain in efficiency consists of 2.4—namely Xg;=27 ver-
sus Xgg=11.3 (line No. 14 in Table 2 of Ref. [47]).

5. Five forces per step, order 4

At P=4, the precision of the fourth-order (K=4) propa-
gation can be improved further by rising the number of
forces to ny=5. Then one finds the algorithm No. 15 with

a1=0,

b =0.0865575774230974 = b,,
c1=0=cy,
a, =0.2799084428277709 = ay,
b, =0.4134424225769026 = b5,
¢, =0.0030896906707527 = c3,
a3 =0.4401831143444583. (41)

Again this is a completely new algorithm with new coeffi-
cients (because of n>0), and the improvement in the effi-
ciency over the corresponding standard gradient algorithm
(No. 15 in Ref. [47]) consists of 30/9.4~ 3.

6. Six forces per step, order 4

The highest precision for order K=4 is achieved at P=5
and n;=6 resulting in the extrapolated algorithm No. 24 with
the following new (n>0) decomposition constants:

a; =0,
by =0.0692875001184967 = b,
c1=0=cs,
a, =0.2217840444237697 = as,
b, =0.3145154584255536 = by,

¢, =0.0016168084229208 = ¢,
a3 =0.2782159555762303 = ay,

b3=10.2323940829118995,

C3:0. (42)

Here the efficiency is better with respect to the gradient
case by a factor of 52/37.6~ 1.4 (Ref. [47], line No. 24 of
Table 2).
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7. Seven forces per step, order 6

Finally, letting the number of force evaluations to n;=7
allows one at P=5 to increase the order of precision to K
=6. The corresponding algorithm No. 29 reads

a; =0,
by =0.3599508087941436 = bs,
c1=0=cs,

a,=1.0798524263824309 = as,
b, =—-0.1437147273026540 = b,,
¢, =—10.0139652542242388 = ¢,
a3 =—0.5798524263824309 = ay,

b3 =0.5675278370170208,

c3=-0.0392470293823456. (43)

Despite the fact that here the number of decomposition co-
efficients is less by 1 (n=—1) with respect to the number of
order conditions due to the presence of the additional re-
quirement 7;=0, the decomposition coefficients [Eq. (43)]
appear to be the same as in the standard gradient case [47].
The reason is a fortunate cancellation of terms with opposite
signs in function 7, [Eq. (28)]. Notice that some of the co-
efficients in Eq. (43) are negative. This is contrary to the
decomposition constants of Egs. (37)—(42) which are all
positive.

IV. APPLICATIONS

The extrapolated gradientlike algorithms will now be
tested in MD and CM simulations to confirm our theoretical
predictions. The most outstanding fourth-order algorithm No.
8 with three force evaluations per step will be applied to MD
runs, while the more complicated schemes Nos. 14, 15, and
24 of order 4 as well as No. 29 of order 6 will be examined
in CM calculations.

A. MD simulations

Here the system considered was a Lennard-Jones (LJ)
fluid modeled by a collection of N=512 identical (m;=m)
particles interacting through the modified potential ¢(r)
=O(r)-P(r.)—(r-r )®'(r,) for r<r, and ¢(r)=0 other-
wise, where ®(r)=4¢[(a/r)'>=(0/r)®] denotes the original
LJ function. The particles were placed in a cubic box of
volume V=L? in the absence of external fields (#=0). The
periodic boundary conditions as well as the above modifica-
tion of ®(r) with r,=L/2=~4.230 have been used to reduce
finite-size effects. The simulations were carried out in a mi-
crocanonical ensemble at a reduced density of n*=€0‘"’
=0.845 and a reduced temperature of T =kgT/e=1.7 (a typi-
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cal thermodynamic point of the LJ fluid). All MD tests were
started from an identical well equilibrated initial configura-
tion p(0) and then were continued over 100 000 or 1 000 000
time steps. The precision of the algorithms was measured in
terms of the ratio R(f)=H(z)/U(¢) of the relative total energy
fluctuations H(r)=((H-(H),)**/|(H)| to the fluctuations
U =((U=U)))*I(U),| of the potential energy U
=%E§ijcp(rlj) [see Eq. (1)], where (S),=%E§<=IS,{ denotes the
cumulative averaging of quantity S (with S=H or U) during
time ¢ along the produced trajectories, S, is the current value
of S at the kth time step, and [=t/At is the total number of
steps corresponding to f. Note that in microcanonical en-
sembles the total energy is an integral of motion, (H),=H,
and thus smaller values of R indicate a better precision of
the integration.

In the MD simulations, the equations of motion were
solved at two typical dimensionless time steps of At*
=At(e/mo?)"?=0.0025 and At"=0.005 using the most out-
standing extrapolated gradientlike algorithm No. 8 of order 4
and its usual gradient counterpart. For the purpose of com-
parison, the runs corresponding to standard nongradient in-
tegrators were also performed. They include the traditional
explicit Runge-Kutta schemes [1,8] of the second (RK2, two
forces per step) and fourth (RK4, four forces) orders as well
as their more recent [48] implicit versions IRK2 and IRK4
(requiring one and two force evaluations per iteration, re-
spectively), the original (No. 1) [13,32] and extended (No. 5)
[28] velocity Verlet algorithms (VV and EVYV, one and two
forces per step, respectively) of order 2, the popular second-
order Stormer-Verlet (SV) algorithm [51] (one force per
step), the fourth-order integrator by Cowel and Numerov
(CN) [52] (one force per iteration), and the fourth-order al-
gorithm by Forest and Ruth (FR) [10] (three forces per step,
No. 12 in Table I). For the implicit integrators IRK2, IRK4,
and CN, the number of iterations varied from 3 to 5 in de-
pendence on the convergence conditions.

The ratios R(#) of energy fluctuations obtained in each of
the cases are shown in Fig. 1 as functions of the length /
=t/At of the MD runs at Ar*=0.0025 [subset (a)] and Ar*
=0.005 [subset (b)]. As can be seen, the RK2 and RK4 inte-
grators exhibit very poor stability and conservative proper-
ties. Here the function R(r) increases with increasing the
observation time ¢ by several orders. This is despite the fact
that for these integrators we used even smaller time steps—
namely, At*=0.001 and Ar"=0.0025, respectively—contrary
to those At"=0.0025 and Ar"=0.005 applied in all the rest
cases. It has been mentioned in the Introduction that the in-
stability follows from the nonsymplecticity of the RK algo-
rithms, preventing us from using them in long-duration MD
simulations. A similar instability is exhibited by condition-
ally symplectic IRK2 and IRK4 algorithms when the number
of iterations is relatively small. For example, the IRK4 algo-
rithm with three iterations is clearly bad (see the dashed
curve marked by IRK4’), and only with rising to five itera-
tions (the solid curve marked by IRK4) the stability is recov-
ered. Note that with such a rise the computational efforts
increase proportionally, resulting in an unacceptable large
number (5X2=10) of force evaluations per time step. For
this reason, the IRK algorithms also cannot be recommended
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FIG. 1. The ratio of energy fluctuations as a function of the
length of the MD simulations carried out at two different time steps,
Af"=0.0025 [subset (a)] and Ar"=0.005 [subset (b)] using various
standard nongradient integrators, as well as the most outstanding
extrapolated gradientlike algorithm No. 8 (solid curves) and its
usual gradient counterpart (short-dashed curves). The standard set
includes the classical explicit (long-dashed curves) and implicit
(solid curves) Runge-Kutta schemes of the second (RK2 and IRK2)
and fourth (RK4 and IRK4) orders and the second-order velocity
Verlet (VV) algorithm and its extended (EVV) version, as well as
the Cowell-Numerov (CN) and Forest-Ruth (FR) integrators (solid
curves) (see the text for other explanations).

for efficient producing of MD trajectories in many-body sys-
tems. A somewhat better convergence of iterations by
smaller computational costs is observed in the case of the
CN integrator. The mean numbers with 3.0 (at Ar"=0.0025)
and 4.4 (at At"=0.005) iterations (resulting in the same num-
ber of force evaluations per step) were sufficient here to
achieve the required stability.

The standard integrators are, however, much less efficient
than the extrapolated gradientlike decomposition algorithm
No. 8. Indeed, as can be seen from Fig. 1, this algorithm with
ny=3 force evaluations per step reduces the energy fluctua-
tions significantly—namely, up to a level comparable with
that of the cumbersome IRK4 integrator requiring ny=10
forces (see above). On the other hand, the best previously
known decomposition FR algorithm (No. 12) which requires
the same computational work (three force evaluations per
step) is also obviously worse. The ratio of energy fluctua-
tions for such an algorithm consists of about R~0.1%,
which is in two order larger with respect to the value R
~0.001% corresponding to algorithm No. 8. Therefore, for
ng=3, the proposed algorithm is indeed the best. For a lower
accuracy level of R ~0.1%—1% (which is acceptable in
MD applications dealing with the study of simple structural
and thermodynamic properties) it is quite sufficient to apply
second-order algorithms No. 1 (VV) or No. 5 (EVV) which
are the best in the cases ny=1 and n;=2, respectively. For
higher accuracy, the preference should be given to the ex-
trapolated gradientlike algorithm No. 8. Such an algorithm
can be used in precise MD applications for the investigation
of complicated properties (such as phase coexistence quanti-
ties, for instance) as well as for the observation of subtle
effects which are very sensitive to the accuracy of the inte-
gration of the equations of motion (especially when ap-
proaching critical regions).

It can be verified readily that the level R(r) of the energy
fluctuations obtained at the end of the simulations (#>> Af)
corresponding to algorithm No. 8 is proportional to R(r)
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~ At* like in the FR case, while R(¢) ~ A#* for the VV and
EVYV integrators. In particular, the fluctuations decrease from
R=(24X10%% to R=(1.5X10""% when decreasing
the size of the time step twice from Ar=0.005 to Af
=0.0025—i.e., in 24/1.5=2* times—as this should be for the
fourth-order integrator No. 8. Moreover, the ratio R/ ALK
(where K=4 or 2) is in turn proportional to the leading norm
Ok, of truncation errors presented in Table I and the coef-
ficient of this proportionality is approximately the same for
each of the algorithms. Therefore, our error-function theory
developed in Sec. II for estimation of the efficiency of the
decomposition integrators is in excellent agreement.

The results related to the standard gradient counterpart of
algorithm No. 8 (which then reduces to the Suzuki-Chin in-
tegrator [35] with two forces and one force-gradient evalua-
tions per step) are also plotted in Fig. 1 by short-dashed
curves. As can be seen, such curves lie very close to those of
the extrapolated gradientlike algorithm. This confirms the
fact that the avoidance of time-consuming gradient evalua-
tions has been performed without decrease of accuracy (or-
der) of the integration.

It is interesting to remark that the extrapolated accelera-
tion methodology proposed in Sec. II for obtaining gradient-
like decomposition algorithms can be successfully used to
improve the efficiency of some nondecomposition integra-
tors as well. In order to demonstrate this, one introduces a
three parameters (9, w, ) family of algorithms described by
the following position and velocity evaluations

r(t+Af) =—r(t— A) +2r(1) + AP[Yat — Ar) + (1
—20)ag(r) + dalt+ Ar)],

_r0+Aﬁ—rU—A0
B 2A¢

A
V(1) — u[agt+ An) —agi- At)]l—;,

(44)

where af(r)za(r(r)+§Atza(r(7-))) denotes the extrapolated
acceleration. For é=0, J=1/12, and pu=1 one reproduces
immediately the fourth-order implicit CN integrator. The ex-
plicit second-order SV algorithm is obtained from Eq. (44) at
£=0, 9=0, and p=0. Note that the CN and SV algorithms
are not self-started, since require values r(7) of position from
two previous steps 7=t and 7=t—Ar to calculate its current
value at 7=t+Ar, while velocity is not involved in the inte-
gration process. This is contrary to decomposition integrators
which are one step by definition and involve both position
and velocity in the propagation [see Eq. (35), for instance].
Note also that when the initial values r(7) and r(z—Az) at the
very beginning of the integration satisfy a certain relation,
the VV and SV algorithms will produce exactly the same
[51] phase trajectory p(z) for any time 7. In our case we used
the one-step IRK4 integrator for first two steps to start the
two-step integration [Eq. (44)]. It has been realized that after
a fast transient in several time steps, the SV and VV trajec-
tories become indistinguishable (the difference between the
SV and VV curves is not visible in scale of Fig. 1). A very
surprising result is obtained when modifying (£#0) the
accelerations—namely, at §=—1/12, 9=0, and w=1/2. This
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FIG. 2. The normalized deviations of the total energy versus the
length of the MD simulations performed at two different time steps,
Ar"=0.0025 [subset (a)] and Ar"=0.005 [subset (b)] using the ex-
trapolated gradientlike algorithm No. 8 (dots) and its second-level
acceleration counterpart (solid curves).

specific choice will be referred to as the advanced SV (ASV)
algorithm. A characteristic feature of this algorithm is that
(unlike the SV integrator) conservation of the total energy is
satisfied with the fourth-order precision due to a fortunate
cancellation of truncation error terms, despite the fact that
position and velocity are still produced with the second-order
accuracy (like in the SV case). At the same time, the ASV
algorithm requires only two force evaluations per step [re-
lated to the original a(r(r)) and modified a/t)=a(r(s)
+&Ara(r(r))) accelerations], while the CN integrator in-
volves three force recalculations per iteration. The function
R(t) corresponding to the ASV algorithm practically coin-
cides with the CN one (small deviations are only within the
first thousand of steps) and thus is omitted in Fig. 1 to sim-
plify the graph presentation.

The extrapolated gradientlike algorithm No. 8 exhibits
also excellent stability properties in extremely long-duration
simulations. In order to demonstrate this, additional MD runs
have been performed with 1000000 time steps. In such

runs, the normalized deviations [H(r)—H]/H of the current

total energy H(¢) from its mean value H (averaged during the
total number of steps) have been measured at each time step
k=t/At=1,2,...,1000000. The second-level acceleration
scheme [Eq. (33)] corresponding to the extrapolated algo-
rithm No. 8 was tested in such MD simulations too. The
results on this are shown in subsets (a) and (b) of Fig. 2 for
Ar*=0.0025 and Ar*=0.005, respectively. As can be seen,
despite some small local dispersion in the distribution of

[H(1)-H]/H related to the (first-level) extrapolated algo-
rithm No. 8 [see dots in Fig. 2 which are masked by solid

curves when H(t) approaches H], the total energy continues

to fluctuate around the same value H even after 1 000 000
time steps. The dispersion amplitude can be reduced approxi-
mately twice by utilizing the second-level acceleration
scheme (solid curves in Fig. 2). On the other hand, the mag-
nitude of energy deviations decreases nearly in 2* times with
decreasing the size of the time step from At =0.005 to Af"
=0.0025.

B. CM simulations

Here we analyzed a motion of a body (planet) of mass m,
in the (gravitation) field u(r)=—c/r of the central particle
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FIG. 3. The ratio of energy fluctuations obtained in the CM
simulations at two time steps, Az=I1/2000 [subset (a)] and Ar
=I1/1000 [subset (b)] using the standard fourth-order integrator by
Forest and Ruth (FR), the most outstanding extrapolated gradient-
like algorithms Nos. 8, 14, 15, and 24 of order 4, and the sixth-order
scheme No. 29 (see the corresponding solid curves). The usual gra-
dient counterparts of algorithms Nos. 14, 15, and 24 are plotted by
the long-, medium-, and short-dashed curves, respectively.

(Sun) with mass m,>>m|, where ¢>0 denotes the intensity
of the interaction. Neglecting (¢=0) the influence of all
other (i=3,4,...,N) bodies (planets, for which m;< m,) in
the (solar) system, we come to the two-dimensional Kepler
problem. Then the equations of motion become particularly
simple,

dr dv r (45)
ar el

where r=r;-r, and units in which the reduced mass
m;m,/(m;+m,) and interaction constant c¢ are equal to 1
have been used. The quantity H=v>/2—1/r should be asso-
ciated now with the total energy, while U=—1/r is its poten-
tial part. We applied the same initial conditions r(0)
=(10,0) and v(0)=(0,1/10) as those employed by previous
authors [35,36]. This corresponds to a highly eccentric (e
=0.9) orbit and provides a nontrivial testing ground for the
trajectory integration. The standard FR integrator, the most
outstanding extrapolated gradientlike algorithms Nos. 8, 14,
15, and 24, as well as their usual gradient counterparts, and
the sixth-order scheme No. 29 have been utilized to integrate
the equations of motion [Eq. (45)].

The ratios R(7) of energy fluctuations obtained in the CM
simulations are presented in Fig. 3 for two time steps, Ar
=I1/2000 [subset (a)] and Ar=I1/1000 [subset (b)], where
[T=m/[2|H(0)|*]"? denotes the period of the elliptical orbit.
As in the case of MD simulations (see Fig. 1), the extrapo-
lated gradientlike algorithm No. 8 (n;=3) leads to much
more precise integration with respect to the standard nongra-
dient FR integrator (n;=3). More accurate extrapolated gra-
dientlike algorithms Nos. 14, 15, and 24 with n;=4, 5, and 6
force evaluations, respectively, allow one to decrease the en-
ergy fluctuations additionally up to a negligible small level
of R~ 107% —107°%, making the integration almost exact.
It is worth mentioning that the gradient counterpart of the
extrapolated algorithm No. 8 represents the Suzuki-Chin
(SC) integrator [35] (two forces and one gradient evaluations
per step). It has been established that the energy fluctuations
R(1) corresponding to the SC integrator are practically the
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FIG. 4. The normalized total energy deviations in a Keplerian
orbit. The results obtained within the extrapolated gradientlike al-
gorithms Nos. 8, 14 [subset (a)], Nos. 15, 24 [subset (b)], and their
usual gradient counterparts, are plotted by the solid and dashed
curves, respectively.

same as those of the extrapolated gradientlike algorithm No.
8 (the deviations are invisible in the scale of Fig. 3). On the
other hand, the usual gradient counterparts of the extrapo-
lated algorithms Nos. 14, 15, and 24 are slightly worse (see
the dashed curves in Fig. 3). The sixth-order integrator algo-
rithm No. 29 is obviously poor. Despite the fact that it con-
serves energy even somewhat better than algorithm No. 8
(but worse with respect to the others at Ar=I1/1000), the
former requires the largest number n;=7 of force evaluations
per step. With decreasing the time step to Ar=I1/2000 the
precision of algorithm No. 29 becomes comparable with that
of integrator No. 15, but again it remains inefficient because
of too large a number of force recalculations.

Finally, the normalized total energy deviations
[H(1)/H(0)—1]/A¢* obtained along the Keplerian orbit are
plotted in Fig. 4 versus the reduced observation time #/I1
during a period. Note that for fourth-order algorithms, such
deviations should be independent of the size of the time step
at sufficiently small values of Atz. This was observed in the
vicinity of Ar=I1/5000, where the influence of higher-order
terms becomes negligible. Note also that the energy devia-
tions are substantial only near midperiods (z/11
=0.5,1.5,2.5,...), when the body is at its closest position to
the attractive center. It has been realized that all the algo-
rithms considered conserve energy periodically. This is a
consequence of the fact that in our case the periodic motion
is integrated by symplectic and time-reversible algorithms.
Another consequence is that the energy error returns to
nearly zero after each period, as this is shown in Fig. 4 in the
neighborhood of a midperiod. Moreover, then the energy
fluctuations R(r) become bounded and independent of ¢
when averaged over long times 7>> 11 [the independence of
R(r) at t>>Ar has already been demonstrated in Fig. 3]. Tt
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can be seen in Fig. 4 that the energy deviations in the case of
the extrapolated gradientlike algorithms are comparable or
even smaller with respect to those of their usual gradient
counterparts [the long-dashed curve in Fig. 4(a) corresponds
to the SC integrator]. But the main advantage of the extrapo-
lated algorithms is that they are free of any force-gradient
evaluations.

V. CONCLUSION

In this work we have proposed an advanced gradientlike
decomposition approach for the construction of highly effi-
cient symplectic MD and CM algorithms. Like the standard
gradient decomposition method, the approach presented is
based on the factorization of the evolution propagator into
exponential operators, but takes into account additional
higher-order analytically integrable commutators under the
exponentials. This has allowed one to express the exponen-
tial operators in terms of only force evaluations, maintaining
at the same time the gradient structure of the factorization. In
such a way, the time-consuming direct evaluations of force
gradients have been avoided by force extrapolation without
any loss of precision of the integration. Using the advanced
approach, the extrapolated gradientlike decomposition algo-
rithms have been explicitly derived and classified within up
to a nine-exponential description and up to order 6 in the
time step. The most outstanding algorithms obtained were
applied to MD and CM simulations. Comparison with previ-
ously known well-established integrators has shown that the
algorithms presented lead to more efficient integration, espe-
cially when moderate or high accuracy of the calculations is
required.

The extrapolated gradientlike algorithms can easily be
adapted for applications in other areas, such as quantum dy-
namics and hybrid Monte Carlo simulations. Moreover, in
multiple-time-scale MD simulations, the expensive long-
ranged forces can be handled by the usual Verlet algorithm,
while the fastest processes caused by the (much less expen-
sive) short-ranged interactions can be integrated using more
accurate gradientlike algorithms. The proposed approach can
also be extended to more complicated systems with orienta-
tional or spin degrees of freedom. These and other relevant
problems will be the subject of a further investigation.
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